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Abstract  

We look for a generalization of the mechanics of Hamilton and Nambu. We have found the 
equations of motion of a classical physical system of S basic dynamic variables charac- 
terized by S - 1 constants of motion and by a 2unction of the dynamical variables and 
the time whose value also remains constant during the evolution of the system. The num- 
ber S may be even or odd. We find that any locally invertible transformations are canonical 
transformations. We show that the equations of motion obtained can be put in a form 
similar to Nambu's equations by means of a time transformation. We study the relation- 
ship of the present formalism to Hamiltonian mechanics and consider an extension of the 
formalism to field theory. 

1. In troduct ion  

In the  fo rmal i sm of  H a m i l t o n i a n  mechan i c s  a physical  sys tem is charac-  

te r ized  b y  N canonica l  pairs o f coo rd ina t e s  and  m o m e n t a  q 1, P 1, • • • qN, PN, 
and by  a H a m i l t o n i a n  H(q,  p). The  e q u a t i o n s  of  m o t i o n  are o b t a i n e d  w i th  the  
help  o f  a var ia t iona l  pr inciple .  

Recen t ly ,  N a m b u  ( 1 9 7 3 )  cons ide red  a genera l i za t ion  o f  H a m i t t o n i a n  mech-  
anics to  the  case o f  a t h r ee -d imens iona l  phase  space in t ead  o f  the  c o n v e n t i o n a l  
phase space s p a n n e d  b y  a canonica l  pair  (q, p) .  He pos tu la tes ,  g iven a t r ip l e t  
(x, y ,  z)  o f  d y n a m i c a l  var iables  and  a pai r  o f  ' H a m f l t o n i a n s '  H(x,  y ,  z),  G(x, y,  z)~ 
the  fo l lowing equa t ions :  

dx _ 3(H, G)  d y  = a(H, G) dz _ 3(H, G) 
(1.1) 

dt a(y, z)' dt a(z,x)' dt a(x, y) 

For  any  F(x, y, z), t hen ,  we have 

d F  = 3(F, H, G) = _ [1~, tI, G] (1 .2)  
at a(x, y, z) 

N a m b u  called [F, H, G] the  genera l ized  Poisson  b r acke t  o f  this  theory .  
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For the case of  a phase space of  any dimensionality, n, he introduces n - 1 
Hamiltonians He, and postulates: 

dE 6(F, H1,H2, . . . ,Hn_I)  
- -  - ( 1 . 3 )  
dt 6(xl, x 2 . . . . .  Xn) 

in lieu o f  ( 1 . 1 ) .  

In that paper he restricts himself to the three-dimensional case, and justifies 
the physical relevance of  such generalizations because equations (1.1) is noth- 
ing but the Euler equation for a rigid rotator, if we identify x, y, z with the 
angular momentum components Lx, Ly, Lz in the body fixed frame on the 
one hand, and G and H, respectively, with the total kinetic energy and the 
square of  the angular momentum in that frame, 

.-I- ,Uy_.. 
G = 2 \ I  x Iy Iz ]' 

H= ½(Lx 2 + Ly 2 +Lz 2) (1.4) 

The main purpose of  the present work is to study a physical system of  S 
basic dynamical variables xl,  x 2 . . . .  x S characterized by S - 1 constants of  
motion Gr(x ) and by a function W(x, t) whose value also remains constant 
during the evolution of  the system. 

We find that the equations of  motion are unique and that they can be given 
the form of  the equations (I .3) postulated by Nambu by means of  a time 
transformation. 

tn the analysis of  invariant properties of  the equations obtained we find 
that the set of  canonical transformations is formed by any locally invertible 
transformation of  the dynamical variables. On the other hand Nambu's 
equations are invariant under a more restricted group. 

It is worth pointing out that the formalism developed is the most general 
consistent with the existence of  the G's  and the W with the additional assump- 
tion of  an invertibility hypothesis.t 

The plan of  the work is as follows: In Section 2 the formalism is elaborated. 
The relation between the equations obtained in Section 2 and Nambu's 
equations are studied in Section 3, and in Section 4 we analyze the relationship 
with Hamiltonian mechanics. Section 5 refers to the invariant properties, and 
in Section 6 the formalism is applied to the study of  the free particle and the 
harmonic oscillator. Finally, in Section 7 we consider a possible generalization 
of  the formalism to field theory and it is applied to the study of  the SchrSdinger 
field. 

The present work is closely related to the theory of Jacobi's multipliers (Apelt, 1953, 
pp. 465--474; de La Vall6e Poussin, 1949, pp. 306-313; Pars, 1968, pp. 409-413; Kilmister, 
1964, pp. 80-85) with which some of the mathematical expressions coincide, but our 
theory differs from Jacobi's since both the objectives and logical sequence used are 
different. 
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2. Formalism 

We want to describe a classical physical system in which the state is fully 
characterized by S independent  variables {Xs} which evolve in time. The 
number S can be even or odd. 

We consider the non-trivial case in which the physical system is characterized 
by S - 1 constants of  motion,  say 

G = G ( x ) ,  r = 1, 2 . . . . .  S - 1 ( 2 . 1 )  

and by a function W, 

W = W(x, t) (2.2) 

whose value also remains constant during the evolution of  the system. More- 
over the G ' s  and W are assumed to be independent  functions with respect to 
the variables x. 

The fact that the G ' s  are constants of  mot ion means that 

d 
- f f f (Gr[x(t ,  x° ) l  } = 0, r = 1, 2 . . . . .  S -- 1 (2.3) 

for any initial state x °. 
These equations are equivalent to 

S 
3 Gr d 

0, r = I, 2 . . . . .  S - t (2.4) Xs 

3xs dt  
s = l  

We also have 

d 
-~ {w[x(t, x°), tl) = o (2.s) 

o r  
S 

OW dxs 3W 
+ -  = 0 (2.6) 

3x s dt 3t 
s = l  

The relations (2.4) and (2.6) form a linear system of  S equations in the S 
unknowns dxs/dt. The determinant formed by the coefficients of the velocities 
in the relations (2.4) and (2.6) is different from zero since the G 's  and W are 
functionally independent.  

Using the properties of the determinants and the independence of the x 's  
we can set the unique solution in the following form: 

a(Xs, G1, Gz, . •., G s - a )  

( ~ W )  ~(xl ,  x2 Xs)  . . . . .  
d x , = - Z -  a(w,a~,a2 . . . .  xs_~) dt . ' 

~ ( x l ,  x 2  . . . . .  x s )  

s = 1, 2 . . . .  s ( 2 . 7 )  
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For any function F(x), we have 

3(F, G1, . . ., Gs-1) 
dF [ 3  " O(Xl, X2 . . . .  ,xs) 

(2.8) 
at =  --gJ 

0(xl, x2,...,xs) 

Equations (2.7) or (2.8) are the equations of motion of a physical system 
characterized by the functions (2.1) and (2.2). 

IF, G1, G2, . . . ,Gs-1  ! as 
We may define a generalized Poisson bracket [. W, G1, G2 . . . .  Gs-1 ) 

F, G1, G2, . ,Gs-1] .~O(F, GI__.2..__.,Gs_I) 
"" a ( x l ,  x 2  . . . .  , X s )  

IV, G,,G2, . , G s - I J  3 - ~ , ~ 1 , ' ~ - ~  (2.9) 

O ( x l ,  x 2 ,  . . . , X s )  

Hence we can write (2.8) as 

dt = - ~  W, G1, . ,as-aJ 

Note that if F is equal to any o f the G's the bracket (2.9) is zero bringing 
out its character as constants of motion. Moreover the bracket (2.9) is sym- 
metric under interchange of any pair of the G's revealing their equal status. 
Finally it is easy to see that the bracket (2,9) is linear in F and obeys the 
derivation taw. 

3. Relation With Nambu's Equations 

The equation of motion (2.8) can be put in a form similar to Nambu's 
equation by means of a time transformation. Consider 

t' =- 3(W, G1, . . . ,Gs_I)  dr (3.1) 

to O(x l ,  x >  . . ., X s )  

then 

dt ~(W, G1 . . . . .  GS-1) 
~ ( x l ,  x 2  . . . . .  X s )  

Note that the right-hand side of (3.2) is always different from zero and this 
implies that t '  is a monotonous function of t. 

(3.2) 
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Using (3.2) we obtain that (2.8) can be written as 

dF= 3(F, G~, G2 . . . . .  Gs-1)  

dt' 3(xa,x2 . . . . .  Xs) 
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(3.3) 

4. Relation to Hamiltonian Mechanics 

A closed mechanical system of N coordinates qn and N canonically con- 
jugated momenta Pn can be characterized by a Hamiltonian H, and it has as 
equations of  motion 

3/-/ ~H 
tin 3pn Pn 3qn n = 1, 2, N (4.1) 

These equations form a system of 2N  differential equations of  first order. Then 
the general solution has 2N arbitrary constants. To fix them it is necessary to 
know the state of  the system at some instant. The Hamiltonian does not contain 
explicitly the time (closed mechanical system), and this implies that Hamilton's 
equations do not contain t explicitly. Hence the election of  the time's origin is 
completely arbitrary and one of  the constants in the solution of  equations (4.1) 
may be considered as an additive constant t o to the time.t 

The general solution of  the equations of motion will be 

q n = q n ( t + t o ,  C > . . . , C 2 N _ l ) ,  n = 1 , 2  . . . . .  N 
(4.2) 

Pn = Pn(t + to, C1 . . . .  ,C2N-1),  n = 1 , 2  . . . . .  N 

Formally, we may solve for to from equations (4.2), 

to = f(q,  P, C a , . . . ,  C2N-1) -- t (4.3) 

and substituting equation (4.3) in (4.2) we can express the 2 N -  1 arbitrary 
constants as functions of  the q's and p's:  

Cn = Cn(q, p), n = 1, 2 . . . . .  2N  - 1 (4.4) 

The functions (4.4) are constants of  motion of  the system.-~" On the other hand 
we can make use of  (4.4) to express t + to as a function of  the q's and p 's  only. 
Hence in this problem the G's of  Section 2 will be given by the C's and W will 
be given by (4.3). If  we apply the formalism of Section 2 we infer equations 
tike (2.8). 

5. Invariance Properties 

5.1. Canonical Transformations 

In the formalism of Hamiltonian mechanics canonical transformations are 
defined as those transformations of  the dynamical variables that leave invariant 

"~ See e.g. Landau & Lifshitz (1969, p. 23). 
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the Hamiltonian formalism. It is proved that the canonical transformations 
leave invariant the value of the fundamental Poisson brackets (Goldstein, 
1964, p. 253).t 

Taking into account this property of the canonical transformations in the 
Hamittonian formalism, Nambu considers a transformation (x, y, z) -+ 
(x', y ' ,  z ')  as canonical i f f i t  leaves invariant the fundamental (Nambu) 
bracket: 

[x',y',z'] = [x, y, z] = 1 (5.1.1) 

The form of Nambu's equations remains unaffected under a canonical trans- 
formation. 

Similarly we define a transformation 

t t t 
(xl, x2 . . . . .  xs)-" (x, ,x2 . . . . .  xs)  (5.1.2) 

as canonical i f f i t  leaves invariant the fundamental generalized bracket of the 
theory: 

x l ' x •  . . . .  'x 'sl= 1 (5.1.3) 
x'l, x'2 . . . . .  X'sJ 

Clearly every locally invertible transformation, namely, a transformation such 
that 

(xl,  x ; , . . . ,  x ) )  4= 0 (5.1.4) 
a ( x l , x >  . . . , x s )  

is canonical. Then 

O(F, G1 . . . . .  GS-1)  b(W, G1 . . . . .  Gs.-1) 
dF [ a W '  3(x l ,x2  . . . . .  x s )  = [ O W '  O(x',,x2 . . . . .  x's) 

a ( x l , x 2 , . . . , x s )  a(x; ,x;  . . . .  ,x~) 

(5.1.5) 

That is, equations (2.8) are form invariant if we use the new set of canonical 
variables. 

t This is also a sufficient condition (Goldstein, 1964, p. 272). 
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5.2. Invariance Under a Transformation o f  the Constants o f  Motion 

We now study what happens to the equations of motion (2.8) when we 
change the original set of  constants of  motion {@} by another set {Hr} such 
that 

0(t t l ,  H2 . . . . .  g s -  1) 

0(G1, G2 . . . . .  Gs-1)  

If  we use the following identity 

4 :0  (5.2.1) 

O(F, H1,H2, . . . , t I s_  l) _ O(W, H 1 , H  2 . . . . .  H S _ I )  

O(F, G1, G 2 . . . . .  G S - I )  O(W, G1, G 2 . . . . .  Gs_ I )  

we can write 

3(F, Gx . . . . .  G S - 1 )  

a-7 = 77  - 7 7  
a(Xl, x2 . . . . .  Xs) 

a(w, H~ . . . . .  H s -  1) 
a(x 1, x2 . . . . .  x s )  

.:IH771) 
(XI ,X = . . . . .  Xs )  

Hence substituting the original set of  constants of  motion by a new set of 
independent functions the physical system remains unaltered. 

(5.2.2) 

(s.2.3) 

6. Examples 

6.1. Free Particle 

We take as dynamical variables the coordinates of  the particle x 1, x2, x 3, 
and their corresponding momenta x4, xs,  x6. 

The constants of  motion that characterize the system are 

G1 = x4, G2 = xs,  G3 = X6 

G4 =XlXS - x4x2, G 5 =x2x  6 - x3x  s (6.1.1) 

It is clear that they correspond to the linear momentum of the particle in the 
three spatial directions and to two of  the components of  the angular momenta. 

The function W will be 

W = x  1 - x4 t  (6.i.2) 

If we use equations (2.8) we are led to the usual equations of the free particle. 

6.2. Harmonic Oscillator 

We choose the variable x 1 proportional to the particle's position and the 
variable x2 to the velocity, in such a way that the energy of  the system is 

Xl 2 X2 2 
G = + - -  (6.2.1) 

2 2 



7 6  ISAAC COHEN 

W e t ~ e  

Xl  
W = cos - j  + t (6.2.2) 

Nf/'X 12 + X 2  2 

where cos-a (x 1/x/x 12 + X2 2) is an angle of the first or second quadrant. Note 
that W is nothing more than to as a function of  the dynamical variables and 
the time. 

Using (2.8) we find 

X1 = X2, J¢2 = --Xl (6.2.3) 

namely, the usual equations of harmonic oscillator. 

7. An Extension of the Formalism to Classical FieM Theory 

Until now we have considered only systems in which the number of  basic 
dynamic variables is finite. In the case of  a field the dynamical variables depend 
on a continuous index besides a discrete one. We write the fields variables as 

Csx, s = l , 2 , . . . , S  (7.1) 
with x=(xl,x2,x3) 
We characterize the system with S - 1 functions Gr, 

Gr = f gr (~, V ~) d3x (7.2) 

constants of  motion of  the system, and by a function W 

W = f w ( $ , V ~ ,  t)d3x (7.3) 

whose value does not change in time, in such a way that the G's and W will 
be assumed to be functionally independent with respect to ~ ix, ~ 2x . . . .  $Sx. 

The fact that the G's  are constants of  motion means 

dGr=~ x~Gr a~SXd3x=O (7.4) 
dt 7Jt)sx at 

s = l  

and a sufficient condition to satisfy (7.4) is 
S 

at S = 1 rTSX 

Also we have 

= 0 (7.5) 

Ow s ~1+'  0~s~ + - - = 0  

~ s x  3t at 
s = l  

(7.6) 
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The relations (7.5) and (7.6) are a linear system of equations of  the same kind 
as the one studied in Section 2. I f  we follow a similar analysis we finally find 
that 

i~(~ ' ,  a l  . . . . .  a s - l )  

a@sxat = f (-- ~Taw) '(~jlx'' a77~ 7,a--s_-- ~)Sx') d3Xt (7.7) 

In the same way as in Section 3 we may perform a time transformation that 
change equations (7.7) to 

a~sx = [  ~(~sx', G1 . . . . .  GS) d3x , (7.8) 
at J ~ ' ( ~ ' ,  ~2~', . . . .  ~s~') 

As an example of  the application of  the formalism? we consider the 
Schr6dinger field (Schiff, 1955, p. 348). The dynamical variables are ~x, ~rx, 
¢* ,  ~rx.* The constants of  mot ion are 

~m (V~*.V~) + v~*~ d3x 

G2 = f (nx - iV*) dax (7.9) 

o3 = f (~: + i~x) d3x 

Using equations (7.8) we find that 

1 3~x (7.10) - 2m vz~x + V ~  =i ~t 

O 
a t  (Trx - i~* )  = 0 (7.11) 

and their complex conjugates. 
Equation (7.10) is the usual Schr6dinger equation. Equation (7. I 1) under- 

lies the indetermination of  the Lagrangian of  a standard fomialism under the 
addition of  a four-divergence. 
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